Three-dimensional culture model to distinguish normal from malignant human bronchial epithelial cells.

نویسندگان

  • Delphine Fessart
  • Hugues Begueret
  • Frederic Delom
چکیده

In the present study, we have developed an in vitro three-dimensional model to differentiate normal lung cells from lung cancer cells in order to study the mechanisms resulting in lung cancer. Using a reconstituted laminin-rich basement membrane (Matrigel), we were able to culture normal human bronchial epithelial cells and a subset of malignant cells. The two cell types can be readily distinguished by the ability of normal cells to express a structurally and functionally differentiated phenotype within Matrigel. Human bronchial epithelial cells embedded in Matrigel as single cells were able to form multi-cellular spherical colonies with a final size close to that of true acini in situ. Sections of mature spheres revealed a central lumen surrounded by polarised epithelial cells. In contrast, none of malignant cells tested, cell lines and lung biopsies responded to basement membrane by lumen formation. These results demonstrated that this in vitro glandular tumour model can be useful for studies of bronchial oncogene. Indeed, these findings may provide the basis for a rapid assay to discriminate normal human bronchial epithelial cells from their malignant counterparts. In conclusion, the three-dimensional tumour bronchial epithelial acinar-like sphere represents a novel in vitro model to further investigate pathophysiological functions resulting in lung cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D culture model to distinguish normal from malignant human bronchial epithelial cells

In the present study, we have developed an in vitro three-dimensional (3D) model to differentiate normal from lung cancer cells in order to study the mechanisms resulting in lung cancer. Using a reconstituted laminin-rich basement membrane (Matrigel), we were able to culture normal human bronchial epithelial cells (HBEC) and a subset of malignant cells. The two cell types can be readily disting...

متن کامل

Modeling Breast Acini in Tissue Culture for Detection of Malignant Phenotype Reversion to Non-Malignant Phenotype

Backgrounds: Evidence is accumulating to support disruption of tissue architecture as a powerful event in tumor formation. For the past four decades, intensive cancer research with the premise of “cancer as a cell based-disease” focused on finding oncogenes or tumor suppressor genes. However, the role of the tissue architecture was neglected. Three dimensional (3D) cell cultures which can recap...

متن کامل

Angiogenesis Following Three-Dimensional Culture of Isolated Human Endometrial Stromal Cells

Background Endometriosis is the presence of endometrial tissue outside of the uterine cavity and is the most common gynecologic disorder in women of reproductive age. We have preliminary evidence that in the presence of a 3-dimensional (3-D) fibrin matrix, human endometrial glands, stroma, and neovascularization can develop in vitro, mimicking the earliest stages of endometriosis. The aim of th...

متن کامل

Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture

Purpose Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell...

متن کامل

Three-Dimensional Organotypic Air-Liquid Interface Method Tracheobronchial Epithelial Cells Cultured by Apical Surface Fluid of Squamous Metaplastic Human Proteomics-Based Identification of Proteins Secreted in

Squamous cell carcinoma in the lung originates from bronchial epithelial cells that acquire increasingly abnormal phenotypes. Currently, no known biomarkers are clinically efficient for the early detection of premalignant lesions and lung cancer. We sought to identify secretedmolecules produced from squamous bronchial epithelial cells cultured with organotypic culture methods. We analyzed prote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European respiratory journal

دوره 42 5  شماره 

صفحات  -

تاریخ انتشار 2013